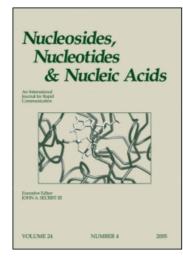
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Synthesis of (±)-4'-Ethynyl and 4'-Cyano Carbocyclic Analogues of Stavudine (d4T)

Hiroki Kumamoto^a; Kazuhiro Haraguchi^a; Hiromichi Tanaka^a; Keisuke Kato^b; Takao Nitanda^c; Masanori Baba^c; Ginger E. Dutschman^d; Yung-Chi Cheng^d

^a School of Pharmaceutical Sciences, Showa University, Tokyo, Japan ^b School of Pharmaceutical Sciences, Toho University, Chiba, Japan ^c Center for Chronic Viral Diseases, Division of Human Retroviruses, Faculty of Medicine, Kagoshima University, Kagoshima, Japan ^d Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA

To cite this Article Kumamoto, Hiroki , Haraguchi, Kazuhiro , Tanaka, Hiromichi , Kato, Keisuke , Nitanda, Takao , Baba, Masanori , Dutschman, Ginger E. and Cheng, Yung-Chi(2005) 'Synthesis of (\pm)-4'-Ethynyl and 4'-Cyano Carbocyclic Analogues of Stavudine (d4T)', Nucleosides, Nucleotides and Nucleic Acids, 24: 2, 73 — 83

To link to this Article: DOI: 10.1081/NCN-200051900 URL: http://dx.doi.org/10.1081/NCN-200051900

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides, and Nucleic Acids, 24 (2):73-83, (2005)

Copyright © 2005 Taylor & Francis, Inc. ISSN: 1525-7770 print/ 1532-2335 online DOI: 10.1081/NCN-200051900

SYNTHESIS OF (\pm) -4'-ETHYNYL AND 4'-CYANO CARBOCYCLIC ANALOGUES OF STAVUDINE (d4T)

Hiroki Kumamoto, Kazuhiro Haraguchi, and Hiromichi Tanaka - School of Pharmaceutical Sciences, Showa University, Tokyo, Japan

Takao Nitanda and Masanori Baba - Center for Chronic Viral Diseases, Division of Human Retroviruses, Faculty of Medicine, Kagoshima University, Kagoshima, Japan

Ginger E. Dutschman and Yung-Chi Cheng Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA

Keisuke Kato - School of Pharmaceutical Sciences, Toho University, Chiba, Japan

The synthesis of (\pm) -4'-ethynyl (8) and 4'-cyano (9) carbocyclic analogues of the anti-HIV agent stavudine (5, d4T) is reported. The carbocyclic unit (16) was constructed from readily available β -keto ester 10. The ethynyl or cyano group of 8 and 9 were prepared, after the introduction of thymine base to 16, by manipulation of the ester function. Evaluation of the anti-HIV activity of 8 and 9 was also carried out.

Keywords Stavudine, 4'-ethynyl-d4T, Carbocyclic Nucleoside

INTRODUCTION

The finding that thymidine derivatives bearing 4'-azido $(\mathbf{1})^{[1]}$ and 4'-cyano $(\mathbf{2})^{[2]}$ substituents show significant inhibitory activity against HIV proliferation has stimulated the synthesis of 4'-substituted nucleoside analogues. In fairy recent studies along this line, 4'-ethynylnucleosides have also been shown to be promising anti-HIV agents. [3-6]

On the other hand, carbocyclic nucleosides have attracted considerable attention as antitumor and antiviral agents. $^{[7-10]}$ In particular, those having a cyclopentene structure, such as carbovir (3) and its cyclopropylamino derivative abacavir (4), have been known to act as potent anti-HIV (human immunodeficiency virus) agents. $^{[11]}$

Received 21 September 2004, accepted 21 October 2004.

This work was financially supported in part by grants from the Japan Health Sciences Foundation (SA14718 to H. T.), Japan Society for the Promotion of Science (KAKENHI No. 15790075 to H. K., No. 15590100 to K. H., and No. 15590020 to H. T.), and NIH USA (RO1 AI 38204 to Y.-C. C.).

Address correspondence to Hiroki Kumamoto, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; E-mail: kumamoto@pharm.showa-u.ac.jp

In our recent studies on the C–C bond formation at the 4'-position of nucleosides, [12–14] the synthesis of 4'-ethynyl ($\mathbf{6}$)[13] and 4'-cyano ($\mathbf{7}$)[14] analogues of anti-HIV agent stavudine ($\mathbf{5}$, d4T: 2',3'-didehydro-3'-deoxythymidine) has been executed. As a result of their antiviral evaluation, both compounds ($\mathbf{6}$ and $\mathbf{7}$) were found to be active against HIV, in particular the activity of 4'-ethynyl-d4T ($\mathbf{6}$) was higher than the parent compound d4T ($\mathbf{5}$). Furthermore, this compound was found to be less toxic to CEM cell growth and less inhibitory to mitochondrial DNA synthesis than d4T. These findings prompted us to design and synthesize the carbocyclic counterparts of $\mathbf{6}$ and $\mathbf{7}$. In this article, we report the synthesis of the 4'-ethynyl ($\mathbf{8}$) and 4'-cyano ($\mathbf{9}$) carbocyclic analogues of d4T as racemates.

RESULTS AND DISCUSSION

A synthetic method for 4'-alkylcarbovir derivatives has been reported from our laboratory. ^[16,17] In this synthesis, alkyl substituents were introduced into the cyclopentane ring by alkylation of the lithium enolate derived from the commercially available methyl 2-oxocyclopentane-carboxylate (10). Since such an approach was apparently not readily applicable to the introduction of ethynyl or cyano groups, we considered the possibility of using the carbomethoxy group of 10 as precursor of our requisite 4'-substituents.

We, therefore, initiated the present study with the introduction of a hydroxymethyl group to 10 (Scheme 1). Attempted reactions of the potassium

SCHEME 1 Preparation of the carbocyclic unit 16.

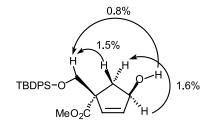


FIGURE 1 NOE correlations observed for 15.

salt of 10 with paraformaldehyde in variety of solvents (DMSO, DMF, HMPA, or H_2O) all met with failure. The desired alcohol 11 was obtained in 77% yield by converting the potassium salt to its tin enolate (Bu₃SnCl/HMPA-THF/0°C/0.5 h) and then reacting with paraformaldehyde for 48 h at room temperature. It was found, however, that direct treatment of 11 simply with 37% aqueous HCHO in the presence of AcOH (at rt for 48 h) gave 11 in quantitative yield.

Conventional silylation of **11** with *tert*-butyldiphenylsilyl chloride gave **12** (77%). Introduction of a double bond to **12** was conducted by Pd-catalyzed dehydrogenation through the corresponding silyl-enolate. The enone **13** was obtained in 88% yield by this procedure. The Luche reduction of **13** followed by acetylation gave the allyl acetate **14** in quantitative yield as a single isomer, although its stereochemistry could not be determined at this stage. Compound **14**, upon Pd-catalyzed allylic rearrangement followed by deacetylation, gave the allyl alcohol **15** in 67% yield. The depicted stereochemistry of **15** came from the results of NOE experiments given in Figure 1. The desired carbocyclic unit **16** was prepared in 83% yield by the Mitsunobu inversion of **15** and subsequent deacetylation.

For the coupling reaction of 16 under the Mitsunobu conditions, N^3 -benzoylthymine^[22] was employed. The resulting reaction mixture was evaporated and then treated with NaOMe in MeOH to give the carbocyclic nucleoside 17 in 52% yield (Scheme 2). The HMBC (heteronuclear multiple bond connectivity) spectrum of 17 gave a cross peak between H-6 and C-1′, which confirmed the depicted regiochemistry.

There are many methods available for the transformation of aldehydes to alkynes. [2]a Reduction of the ester function of **17** was carried out with i-Bu₂AlH. However, it turned out that, even at low temperature (-70° C in CH₂Cl₂), only a small amount of the desired aldehyde **19** was formed, the main product being the hydroxymethyl derivative **18**, as evidenced by TLC analysis (hexane/EtOAc = 1/3). Compound **18** was, therefore, reoxidized with Dess-Martin periodinane in CH₂Cl₂ and the aldehyde **19** formed was used for further transformations without characterization.

SCHEME 2 (R = TBDPS) Synthesis of 4'-ethynyl and 4'-cyano carbocyclic d4T.

For the preparation of the 4'-ethynyl derivative (**20**), the method reported by Agrofoglio and co-workers^[24] was used. Thus, treatment of **19** with a diazophosphonate $CH_3COC(N_2)P(O)(OMe)_2^b$ in MeOH in the presence of K_2CO_3 furnished **20** in 47% yield. Its ¹³CNMR spectrum showed the presence of two ¹³C-resonances apparently derived from carbon atoms of the ethynyl group: δ 71.1 ($C \equiv CH$) and 84.8 ($C \equiv CH$). In addition, an NOE enhancement (0.5%) was observed between H-6 and CH_2 -6' of **20**, supporting the depicted stereochemistry. The 4'-cyano derivative **22** was prepared in 81% yield through the oxime intermediate **21**, which underwent spontaneous elimination upon treatment with MsCl in pyridine. In the ¹³C NMR spectrum of **22**, the 4'-CN appeared at δ 120.2, which is typical for nitrile resonances. Desilylation of **20** and **22** was carried out by conventional procedure (Bu₄NF in THF). The target compounds **8** (60%) and **9** (32%) were obtained after purification through the respective 6'-O-acetate.

Finally, **8** and **9** were assayed for their ability to inhibit the replication of HIV-1 in MT-4 cell culture, the results of which are summarized in Table 1 together with the data of stavudine and 4'-ethynylstavudine (**6**). Unfortunately, both **8** and **9** did not display any inhibitory activity.

EXPERIMENTAL SECTION

Melting points are uncorrected. ^{1}H NMR and ^{13}C NMR were measured on a JEOL JNM-LA 500 (500 MHz). Chemical shifts are reported relative to Me₄Si. Mass

^bFor the preparation of the diazophosphonate: Ref. [25].

^cSynthesis of 4'-cyano-2'-deoxy purine nucleosides has recently been reported: Ref. [26].

Compound	EC ₅₀ (μM)	CC ₅₀ (µM)
Stavudine	0.47	>100
6	0.14	>100
8	>100	>100
9	>100	>100

TABLE 1 Anti-HIV-1 Activity in MT-4 Cells

spectra (MS) were taken in FAB mode with m-nitrobenzyl alcohol as a matrix on a JEOL JMS-700. Ultraviolet spectra (UV) were recorded on a JASCO V-530 spectrophotometer. Column chromatography was carried out on silica gel (Micro Bead Silica Gel PSQ 100B, Fuji Silysia Chemical Ltd.). Thin layer chromatography (TLC) was performed on silica gel (precoated silica gel plate F_{254} , Merck). Where necessary, analytical samples were purified by high-performance liquid chromatography (HPLC). HPLC was carried out on a Shimadzu LC-6AD with a Shim-pack PREP-SIL (H) KIT column (2 \times 25 cm). THF was distilled from benzophenone ketyl.

1-Hydroxymethyl-2-oxocyclopentanecarboxylic acid methyl ester (11). A mixture of **10** (5.0 g, 35.2 mmol), 37% aqueous HCHO (33 mL, *ca.* 370 mmol), and AcOH (4.03 mL, 70.3 mmol) was stirred for 23 h at rt. The reaction mixture was partitioned between CH_2Cl_2 and aqueous NaHCO₃. The organic layer was dried (Na₂SO₄), and purified by column chromatography (hexane/EtOAc = 1/1). This gave **11** (6.05 g, 100%) as an oil: ¹HNMR (CDCl₃) δ 1.97–2.18 (2H, m, CH₂), 2.21–2.25 (1H, m, CH₂), 2.29–2.53 (3H, m, OH and CH₂), 2.62–2.66 (1H, m, CH₂), 3.74 (3H, s, Me), 3.81 (1H, dd, J = 11.2 and 8.0 Hz, CH₂OH), 3.89 (1H, dd, J = 11.2 and 4.4 Hz, CH₂OH); FAB-MS m/z 173 (M⁺+ H). Anal Calcd for $C_8H_{12}O_4$ ·1/5H₂O: C, 54.65; H, 7.11. Found: C, 54.54; H 6.96.

1-(tert-Butyldiphenylsilyloxymethyl)-2-oxo-cyclopentanecar-boxylic acid methyl ester (12). A mixture of 11 (10.35 g, 60.1 mmol), imidazole (8.18 g, 120.2 mmol), and TBDPSCl (15.6 ml, 60.1 mmol) in DMF (40 mL) was stirred for 16 h at room temperature under positive pressure of dry Ar. The mixture was partitioned between EtOAc and sat. aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and evaporated. The resulting syrupy residue was treated with MeOH (ca. 40 mL) to give the precipitated 12. This procedure was repeated further three times to give 12 (18.97 g, 77%) as a white solid: mp 89–91°C; 1 HNMR (CDCl₃) δ 1.02 (9H, s, SiBu-t), 2.03–2.11 (2H, m, CH₂), 2.26–2.35 (1H, m, CH₂), 2.41–2.53 (3H, m, CH₂), 3.65 (3H, s, Me), 3.87 (1H, d, J = 9.6 Hz, CH₂OSi), 4.09 (1H, d, J = 9.6 Hz, CH₂OSi), 7.37–7.46 (6H, m, Ph), 7.61–7.65 (4H, m, Ph); FAB-MS m/z 411 (M⁺+ H). Anal Calcd for C₂₄H₃₀O₄Si · 1/10H₂O: C, 69.90; H, 7.38. Found: C, 69.89; H, 7.43.

1-(tert-Butyldiphenylsilyloxymethyl)-2-oxo-3-cyclopentene-carboxylic acid methyl ester (13). To a stirring mixture of 12 (3.58 g, 8.72 mmol) and Et₃N (6.1 ml, 43.6 mmol) was added Me₃SiOSO₂CF₃ (2.56 mL, 13.0 mmol) at 0°C under positive pressure of dry Ar. The mixture was stirred for 30 min at the same temperature and then partitioned between CH₂Cl₂ and sat. aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and evaporated. The residue was dissolved in DMSO (12 mL). To this solution was added Pd(OAc)₂ (98 mg, 0.44 mmol), and the mixture was stirred for 36 h under positive pressure of O₂. The mixture was partitioned between EtOAc and brine. Column chromatography (hexane/EtOAc = 5/1) of the organic layer gave 13 (3.13 g, 88%) as a white solid: mp 103–105°C; ¹HNMR (CDCl₃) δ 0.97 (9H, s, SiBu-t), 2.99–3.05 (1H, m, CH₂), 3.21–3.26 (1H, m, CH₂), 3.66 (3H, s, Me), 3.98 (1H, d, J = 10.0 Hz, CH₂OSi), 4.18 ((1H, d, J = 10.0 Hz, CH₂OSi), 6.24–6.26 (1H, m, CH = CH), 7.37–7.45 (6H, m, Ph), 7.58–7.62 (4H, m, Ph), 7.86–7.88 (1H, m, CH = CH); FAB-MS m/z 409 (M⁺+ H). Anal Calcd for C₂₄H₂₈O₄Si · 1/10H₂O: C, 70.24; H, 6.93. Found: C, 70.19; H, 6.94.

2-Acetoxy-1-(tert-butyldiphenylsilyloxy)methyl-3-cyclopentenecarboxylic acid methyl ester (14). A mixture of NaBH₄ (628 mg, 16.6 mmol) and MeOH (50 mL) was cooled and stirred at -70° C. To this was added a mixture of **13** (3.39 g, 8.3 mmol) and CeCl₃· 7H₂O (3.1 g, 8.3 mmol) in THF/ MeOH = 1/1 (50 mL) drop-wise for 15 min. The resulting suspension was stirred for 1 h at -70° C. The reaction was quenched by adding AcOH (ca. 1 mL). The reaction mixture was evaporated. The residue was suspended in MeCN (15 ml). To this suspension were added DMAP (1.02 g, 8.3 mmol), i-Pr₂NEt (1.45 mL, 8.3 mmol) and Ac₂O (1.57 mL, 16.6 mmol). The mixture was stirred for 30 min at 0°C under positive pressure of dry Ar and partitioned between CH₂Cl₂ and sat. aqueous NaHCO₃. Column chromatography (hexane/EtOAc = 4/1) of the organic layer gave **14** (3.74 g, 100%) as an oil: ¹HNMR (CDCl₃) δ 1.02 (9H, s, SiBu-t), 1.87 (3H, s, Ac), 2.50–2.55 (1H, m, CH₂), 2.91–2.97 (1H, m, CH₂), 3.71 (3H, s, Me), 3.87 (1H, d, J = 9.6 Hz, CH₂OSi), 4.08 (1H, d, J = 9.6 Hz, CH₂OSi), 5.76–5.78 (1H, m, CH = CH), 5.99-6.00 (1H, m, CH = CH), 6.07-6.08 (1H, m, AcOCH), 7.29-7.45 (4H, m, Ph), 7.61–7.65 (4H, m, Ph); FAB-MS m/z 453 (M⁺+ H). Anal Calcd for $C_{26}H_{32}O_5Si \cdot 1/2H_2O$: C, 67.65; H, 7.21. Found: C, 67.73; H, 7.03.

1-(tert-Butyldiphenylsilyloxy) methyl-(trans-4-hydroxy)-2-cyclopentenecarboxylic acid methyl ester (15). A mixture of 14 (1.87 g, 4.13 mmol), PdCl₂(MeCN)₂ (106 mg, 0.41 mmol), and p-benzoquinone (224 mg, 2.07mmol) in THF (17 mL) was refluxed for 3 h under positive pressure of dry Ar. The mixture was partitioned between CH₂Cl₂ and sat. aqueous Na₂S₂O₃. The organic layer was dried (Na₂SO₄), and evaporated. The residue was dissolved in MeOH (5 ml) and treated with K₂CO₃ (685 mg, 4.96 mmol) for 1 h with stirring. The mixture was partitioned between CHCl₃ and brine. Column chromatography (hexane/EtOAc = 6/1) of the organic layer gave 15 (1.14 g, 67%) as an oil: ¹HNMR

(CDCl₃) δ 1.02 (9H, s, SiBu-t), 1.87 (1H, dd, J = 14.4 and 2.4 Hz, CH₂), 2.73 (1H, dd, J = 14.4 and 7.2 Hz, CH₂), 3.65 (3H, s, Me), 3.79 (1H, d, J = 9.6 Hz, CH₂OSi), 3.85 (1H, d, J = 9.6 Hz, CH₂OSi), 4.82–4.87 (1H, m, CHOH), 5.84–5.87 (1H, m, CH = CH), 6.02–6.04 (1H, m, CH = CH), 7.38–7.44 (6H, m, Ph), 7.63–7.65 (4H, m, Ph); FAB-MS m/z 411 (M⁺+ H). Anal Calcd for C₂₄H₃₀O₄Si · 1/10H₂O: C, 69.90; H, 7.38. Found: C, 69.89; H, 7.40.

1-(tert-Butyldiphenylsilyloxy)methyl-(cis-4-hydroxy)-2-cyclopentenecarboxylic acid methyl ester (16). A mixture of 15 (1.08 g, 2.63 mmol), Ph_3P (897 mg, 3.42 mmol), and AcOH (301 μ L, 5.26 mmol) in THF (10 mL) was cooled to 0°C under positive pressure of dry Ar. To this was added drop-wise diethyl azodicarboxylate (2.3 M solution in toluene, 1.49 mL, 3.42 mol). After stirring for 30 min, the mixture was partitioned between CH₂Cl₂ and sat. aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and evaporated. The residue was treated with K₂CO₃ (727 mg, 5.26 mmol) in MeOH (5 mL) for 1 h. The mixture was partitioned between CHCl₃ and brine. Column chromatography (hexane/EtOAc = 4/1) of the organic layer gave **16** (892 mg, 83%) as an oil: 1 HNMR (CDCl₃) δ 1.02 (9H, s, SiBu-t), 2.20–2.31 (3H, m, CH₂ and OH), 3.70 (1H, d, J = 9.6 Hz, CH_2OSi), 3.71 (3H, s, Me), 3.87 (1H, d, J = 9.6 Hz, CH_2OSi), 4.76– 4.81 (1H, m, CHOH), 5.88 (1H, d, J = 5.6 Hz, CH = CH), 6.03 (1H, dd, J = 5.6and 2.4 Hz, CH = CH), 7.36–7.46 (6H, m, Ph), 7.61–7.65 (4H, m, Ph); FAB-MS m/z 411 (M⁺+ H). Anal Calcd for $C_{24}H_{30}O_4Si \cdot 1/10H_2O$: C, 69.90; H, 7.38. Found: C, 69.85; H, 7.46.

1-[cis-1-(tert-Butyldiphenylsilyloxy)methyl-trans-1-methoxycarbonyl-2-cyclopenten-4-yl]thymine (17). To a THF (30 mL) solution of PPh₃ (1.93 g, 7.35 mmol) was added drop-wise DEAD (2.3 M toluene solution, 3.08 mL, 7.08 mmol) at 0°C under positive pressure of dry Ar, and the mixture was stirred for 0.5 h. To this was added a THF (45 mL) suspension containing 16 (1.16 g, 2.83 mmol) and N^3 -benzoylthymine (976 mg, 4.25 mmol), and the reaction mixture was stirred for 45 h at room temperature. After evaporation of the solvent, the residue was treated with 2M NaOMe in MeOH (5.5 mL) for 2 h with stirring. The mixture was neutralized by adding AcOH (1.15 mL) and then partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography (hexane/ EtOAc = 1/1) of the organic layer gave 17 (758 mg, 52%) as a white foam: UV (MeOH) λ_{max} 272 nm (ϵ 9800), λ_{min} 240 nm (ϵ 2200); ¹HNMR (CDCl₃) δ 1.05 (9H, s, SiBu-t), 1.74 (3H, d, J = 1.2 Hz, 5-Me), 1.75 (1H, dd, J = 14.0 and 6.8 Hz, H-5'), 3.01 (1H, dd, J = 14.0 and 8.4 Hz, H-5'), 3.70 (3H, s, CO₂Me), 3.87 (1H, d, J = 10.0Hz, H-6'), 3.90 (1H, d, J = 10.0 Hz, H-6'), 5.79 (1H, dd, J = 5.2 and 2.0 Hz, H-2'), 5.83-5.88 (1H, m, H-1'), 6.10 (1H, dd, J = 5.2 and 2.4 Hz, H-3'), 6.88 (1H, q, J = 1.2Hz, H-6), 4.36–7.47 (6H, m, Ph), 7.61–7.64 (4H, m, Ph), 8.89 (1H, br, NH); FAB-MS m/z 519 (M⁺+ H). Anal Calcd for C₂₉H₃₄N₂O₅Si · 1/10H₂O: C, 66.92; H, 6.62; N, 5.38. Found: C, 66.71; H, 6.59; N, 5.61.

1-[*cis*-1-(*tert*-Butyldiphenylsilyloxy) methyl-*trans*-1-hydroxymethyl-2-cyclopenten-4-yl]thymine (18). To a CH₂Cl₂ (30 mL) solution of **17** (2.1 g, 4.05 mmol) was added drop-wise *i*-Bu₂AlH (1.01 M in toluene, 16 mL, 16.2 mmol) at -70° C under positive pressure of dry Ar. After stirring for 40 min, the reaction was quenched by adding AcOH, and the mixture was partitioned between CHCl₃ and aqueous NH₄Cl. Column chromatography (CHCl₃/MeOH = 20/1) of the organic layer gave **18** (1.75 g, 88%) as a foam: UV (MeOH) λ_{max} 272 nm (ε 9300), λ_{min} 240 nm (ε 1800); ¹HNMR (CDCl₃) δ 1.07 (9H, s, SiBu-t), 1.50 (1H, dd, J = 14.0 and 6.8 Hz, H-5′), 1.75 (3H, d, J = 0.8 Hz, 5-Me), 1.90 (1H, t, J = 5.8 Hz, OH), 2.43 (1H, dd, J = 14.0 and 8.6 Hz, H-5′), 3.58–3.64 (2H, m, CH₂OH), 3.67 (1H, d, J = 10.0 Hz, H-6′), 3.71 (1H, d, J = 10.0 Hz, H-6′), 5.72–5.76 (2H, m, H-1′ and H-2′), 6.09 (1H, dd, J = 5.6 and 2.2 Hz, H-3′), 6.88 (1H, q, J = 0.8 Hz, H-6), 7.36–7.47 (6H, m, Ph), 7.63–7.65 (4H, m, Ph), 8.26 (1H, br, NH); FAB-MS m/z 491 (M⁺+ H). Anal. Calcd for C₂₈H₃₄N₂O₄Si · H₂O: C, 66.11; H, 7.13; N. 5.51. Found: C, 66.48; H, 6.92; N, 5.50.

1-[cis-1-(tert-Butyldiphenylsilyloxy)methyl-trans-1-ethynyl-2cyclopenten-4-yl]thymine (20). To a solution of 18 (66 mg, 1.35 mmol) in CH_2Cl_2 (20 mL) was added Dess-Martin periodinane (1.15 g 2.70 mmol). After stirring for 1.5 h, the reaction mixture was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and evaporated to give the crude aldehyde 19, which was dissolved in MeOH (30 mL). After adding K₂CO₃ (747 mg, 5.40 mmol), the MeOH solution of **19** was reacted with dimethyl (1-diazo-2-oxopropyl)phosphonate (648 mg, 3.38 mmol) at room temperature for 2 h. The reaction mixture was partitioned between EtOAc and saturated aqueous NaHCO3. Column chromatography (hexane/EtOAc = 1/1) of the organic layer gave **20** (305 mg, 47%) as a foam: UV (MeOH) λ_{max} 271 nm (ε 9600), λ_{min} 238 nm (ε 1800); ¹HNMR (CDCl₃) δ 1.07 (9H, s, SiBu-t), 1.71 (3H, d,J = 1.2 Hz, 5-Me), 2.02 (1H, dd, J = 13.2 and 7.6 Hz, H-5'), 2.20 (1H, s, C \equiv CH), 2.70 (1H, dd, J = 13.2 and 8.0 Hz, H-5'), 3.69 (1H, d, J = 9.6 Hz, H-6'), 3.83 (1H, d, J = 9.6 Hz, H-6', 5.76 (1H, dd, J = 5.2 and 2.0 Hz, H-2', 5.91 - 5.95 (1H, m, H-1'),6.02 (1H, dd, J = 5.2 and 2.4 Hz, H-3'), 6.98 (1H, q, J = 1.2 Hz, H-6), 7.37–7.48 (6H, m, Ph), 7.63–7.66 (4H, m, Ph), 8.20 (1H, br, NH); 13 C NMR (CDCl₃) δ 12.3 (5-Me), 19.5 (CMe_3), 26.9 (CMe_3), 40.2 (C5'), 49.2 (C4'), 60.6 (C1'), 67.7 (C6'), 71.1 $(C \equiv CH)$, 84.8 $(C \equiv CH)$, 111.3 (C5), 127.9, 130.0 135.5 and 135.6 (Ph-tertiary), 130.8 (C2'), 132.8 (Ph-quaternary), 136.3 (C6), 139.6 (C3'), 150.7 (C2), 163.4 (C4); FAB-MS m/z 485 (M⁺+ H). Anal. Calcd for $C_{29}H_{39}N_2O_3Si \cdot 3/4H_2O$: C, 69.91; H, 6.78; N, 5.62. Found: C, 70.10; H, 6.73; N, 6.02.

1-(tert-Butyldiphenylsilyloxy)methyl-trans-4-(thymin-1-yl)-2-cyclopentenecarbaldehyde oxime (21). To a solution of 18 (1.7 g, 3.46 mmol) in CH_2Cl_2 (45 mL) was added Dess-Martin periodinane (2.93 g, 6.93 mmol). After stirring for 1.5 h, the mixture was partitioned between CH_2Cl_2 and

saturated aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and evaporated to give the crude aldehyde **19**, which was dissolved in pyridine (50 mL) containing NH₂OH·HCl (482 mg, 6.93 mmol). After stirring for 20 h at room temperature, the reaction mixture was partitioned between CH₂Cl₂ and brine. Column chromatography (hexane/EtOA = 1/2) of the organic layer gave **21** (1.18 g, 68%) as a foam: UV (MeOH) λ_{max} 272 nm (ϵ 9300), λ_{min} 240 nm (ϵ 2400); ¹H NMR (CDCl₃) δ 1.08 (9H, s, Bu-t), 1.80 (3H, d, J = 1.0 Hz, 5-Me), 1.81 (1H dd, J = 13.2 and 8.8 Hz, H-5′), 2.92 (1H, dd, J = 13.2 and 7.8 Hz, H-6′), 3.79 (1H, d, J = 10.2 Hz, H-6′), 5.76–5.80 (2H, m, H-1′ and H-2′), 6.10 (1H, dd, J = 5.8 and 2.4 Hz, H-3′), 7.00 (1H, q, J = 1.0 Hz, H-6), 7.37–7.47 (7H m, CH = NOH and Ph), 7.61–7.65 (4H, m, Ph), 9.05 (1H, br, NH), 9.32 (1H, br, CH = NOH); FAB-MS m/z 504 (M⁺+ H). Anal. Calcd for C₂₈H₃₃N₃O₄Si: C, 66.77; H, 6.60; N, 8.34. Found: C, 66.68; H, 6.78; N, 8.15.

1-[cis-1-(tert-Butyldiphenylsilyloxy)methyl-trans-1-cyano-2cyclopenten-4-yl]thymine (22). To a pyridine (10 mL) solution containing **21** (1.0 g, 1.99 mmol) and DMAP (366 mg, 3.0 mmol) was added MsCl (461 μ L, 5.96 mmol) at 0°C. After stirring for 30 h at room temperature, the reaction mixture was partitioned between CH₂Cl₂ and brine. Column chromatography (hexane/ EtOAc = 1/2) of the organic layer gave 22 (787 mg, 81%) as a foam: UV (MeOH) λ_{max} 271 nm (ϵ 9900), λ_{min} 238 nm (ϵ 2000); ¹H NMR (CDCl₃) δ 1.09 (9H, s, Bu-t), 1.75 (3H, d, J = 1.2 Hz, 5-Me), 1.88 (1H, dd J = 14.4 and 7.2 Hz, H-5'), 2.96 (1H, dd, J = 14.4 and 8.4 Hz, H-5'), 3.78 (1H, d, J = 10.0 Hz, H-6'), 3.83 (1H, d, J = 10.0Hz, H-6'), 5.86–5.91 (1H, m, H-1'), 5.97 (1H, dd, J = 5.2 and 2.0 Hz, H-2'), 6.08 (1H, dd, J = 5.2 and 2.0 Hz, H-3'), 6.76 (1H, q, J = 1.2 Hz, H-6), 7.38–7.49 (6H, m, Ph), 7.61–7.65 (4H, m, Ph), 8.28 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.4 (5-Me), 19.4 (CMe_3) , 26.8 (CMe_3) , 38.4 (C5'), 49.9 (C4'), 60.3 (C1'), 66.9 (C6'), 111.7 (C5), 120.2 (CN), 128.0 130.2, 130.3, 135.5, and 135.6 (Ph-tertiary), 132.0 and 132.1 (Phquaternary), 134.3 (C2'), 134.5 (C3'), 135.4 (C6), 150.4 (C2), 163.1 (C4); FAB-MS m/z 486 (M⁺ + H). Anal. Calcd for $C_{28}H_{31}N_2O_3Si \cdot 1/4H_2O$: C, 68.61; H, 6.48; N, 8.57. Found: C, 68.42; H, 6.46; N, 8.35.

1-(trans-1-Ethynyl-cis-1-hydroxymethyl-2-cyclopenten-4-yl)thymine (8). A mixture of 20 (101 mg, 0.21 mmol) and Bu₄NF (1M solution in THF, 230 μL, 0.23 mmol) in THF (3 mL) was stirred for 2 h at room temperature. To this mixture were added 4-dimethylaminopyridine (51 mg, 0.42 mmol), *i*-Pr₂NEt (73 μL, 0.42 mmol), and Ac₂O (80 μL, 0.84 mmol). The reaction mixture was stirred for 30 min, and then partitioned between CH₂Cl₂ and sat. aqueous NaHCO₃. Column chromatography (EtOAc) of the organic layer gave the acetate (52 mg) as a solid. This acetate was treated with NH₃/MeOH (35 ml) below 0°C for 12 h. During evaporation of the solvent, precipitation occurred. The precipitate was washed with hot benzene (50 mL) to give an analytically pure sample of 8 (31 mg, 60%) as a solid: mp 205–208°C; UV (MeOH) $\lambda_{\rm max}$ 272 nm (ε 10,300), $\lambda_{\rm min}$ 237 nm

(ϵ 1600); ¹HNMR (DMSO-d₆) δ 1.73 (3H, d, J = 0.8 Hz 5-Me), 1.89 (1H, dd, J = 14.0 and 6.2 Hz, H-5′), 2.46 (1H, dd, J = 14.0 and 8.8 Hz, H-5′), 3.09 (1H, s, C \equiv CH), 3.41 (1H, dd, J = 10.8 and 6. Hz, H-6′), 4.58 (1H, dd, J = 10.8 and 5.4 Hz, H-6′), 5.22–5.25 (1H, m, OH), 5.60–5.63 (1H, m, H-1′), 5.77–5.79 (1H, m, H-2′), 5.93–5.95 (1H, m, H-3′) 7.31 (1H, q, J = 0.8 Hz, H-6) 11.2 (1H, br, NH); ¹³C NMR (DMSO-d₆) δ 12.2 (5-Me), 39.8 (C5′), 49.1 (C4′), 59.9 (C1′), 66.4 (C6′), 72.8 (C \equiv CH), 86.5 (C \equiv CH), 108.8 (C5), 130.7 (C2′), 137.3 (C6), 139.0 (C3′), 150.8 (C2), 163.8 (C4). Anal. Calcd for C₁₃H₁₄N₂O₃· 1/5 H₂O : C, 62.49; H, 5.81; N, 11.21. Found: C, 62.57; H, 5.65; N, 11.22.

1-(trans-1-Cyano-cis-1-hydroxymethyl-2-cyclopenten-4-yl)thymine (9). A mixture of 22 (251 mg, 0.52 mmol) and Bu₄NF (1M solution in THF, 579 µL, 0.57 mmol) in THF (7 mL) was stirred for 2 h at room temperature. To this mixture were added 4-dimethylaminopyridine (128 mg, 1.04 mmol), i-Pr₂NEt (181 μ L, 1.04 mmol), and Ac₂O (196 μ L, 2.08 mmol). The reaction mixture was stirred for 30 min, and then partitioned between CH₂Cl₂ and sat. aqueous NaHCO₃. Column chromatography (EtOAc) of the organic layer gave the acetate (98 mg) as a solid. This acetate was treated with NH₃/MeOH (20 ml) below 0°C for 12 h. During evaporation of the solvent, precipitation occurred. The precipitate was washed with hot benzene (50 ml) to give an analytically pure sample of 9 (41 mg, 32%) as a solid: mp 228–230°C; UV (MeOH) λ_{max} 271 nm (ϵ 10,000), λ_{min} 240 nm (ε 1700); ¹H NMR (DMSO-d₆) δ 1.74 (3H, d, J = 0.8 Hz, 5-Me), 1.90 (1H, dd, J = 14.4 and 6.4 Hz, H-5'), 2.73 (1H, dd, J = 14.4 and 8.8 Hz, H-5'), 3.62 (1H, dd, J = 10.8 and 6.0 Hz, H-6'), 3.65 (1H, dd, J = 10.8 and 5.6 Hz, H-6'), 5.61–5.66 (2H, m, H-1' and OH), 6.06-6.11 (2H, m, H-2' and H-3'), 7.23 (1H, q, J = 0.8 Hz, H-6), 11.31 (1H, br, NH); ¹³C NMR (DMSO-d₆) δ 12.1 (5-Me), 37.8 (C5'), 49.9 (C4'), 60.0 (C1'), 65.1 (C6'), 109.2 (C5), 121.8 (CN), 133.5 (C3'), 134.6 (C2'), 137.1 (C6), 150.8 (C2), 163.1 (C4); FAB-MS m/z 248 (M⁺+ H). Anal. Calcd for $C_{12}H_{13}N_3O_3$: C, 58.29; H, 5.30; N, 17.00. Found: C, 58.27; H, 5.22; N, 16.71.

REFERENCES

- Maag, H.; Rydzewski, R.M.; McRoberts, M.J.; Crawford-Ruth, D.; Verheyden, J.P.H.; Prisbe, E.J. Synthesis and anti-HIV activity of 4'-azido- and 4'-methoxy-nucleosides. J. Med. Chem. 1992, 35, 1440.
- O-Yang, C.; Wu, H.Y.; Fraser-Smith, E.B.; Walker, K.A.M. Synthesis of 4'-C-cyanothymidine and analogues as potent inhibitors of HIV. Tetrahedron Lett. 1992, 33, 37.
- 3. Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Synthesis of $4'\alpha$ _branched thymidines as a new type of antiviral agent. Bioorg. Med. Chem. Lett. **1999**, 9, 385.
- Nomura, M.; Shuto, S.; Tanaka, M.; Sasaki, T.; Mori, S.; Shigeta, S.; Matsuda, A. Synthesis and biological activities of 4'α-C-branched-chain sugar pyrimidine nucleosides. J. Med. Chem. 1999, 42, 2901.
- Ohrui, H.; Kohgo, S.; Kitano, K.; Sakata, S.; Kodama, E.; Yoshimura, K.; Matsuoka, M.; Shigeta, S.; Mitsuya, H. Synthesis of 4'-C-ethynyl β-arabino-and 4'-C-ethynyl-2'-deoxy-β-D-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J. Med. Chem. 2000, 43, 4516.
- Kodama, E.; Kohgo, S.; Kitano, K.; Machida, H.; Gatanaga, H.; Shigeta, S.; Matsuoka, M.; Ohrui, H.; Mitsuya, H. 4'-Ethynyl nucleoside analogues: potent inhibitors of multidrug-resistant human immunodeficiency virus variant in vitro. Antimicrob. Agent Chemother. 2001, 45, 1539.
- Vince, R.; Hua, M. Synthesis and anti-HIV activity of carbocyclic 2',3'-didehydro-2',3'-dideoxy-2,6-disubstituted purine nucleosides. J. Med. Chem. 1990, 33, 17.

- 8. Daluge, S.M. Therapeutic Nucleosides. U.S. patent 1991, Patent number 5034394.
- Daluge, S.M.; Good, S.S.; Faletto, M.B.; Miller, W.H.; St. Clair, M.H.; Boone, L.R.; Tisdale, M.; Parry, N.R.; Reardon, J.E.; Dornsife, R.E.; Averett, D.R.; Krenitsky, T.A. 1592U89, A novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob. Agents Chemother. 1997, 41, 1082
- Weller, S.; Radomski, K.M.; Lou, Y.; Stein, D.S. Population pharmacokinetics and pharmavodinamic modeling of abacavir (1592U89) from a dose-ranging, double-blind, randomized monotherapy trial with human immunodeficiency virus-inkected subjects. Antimicrob. Agents Chemother. 2000, 44, 2052.
- Mansuri, M.M.; Hitchcock, M.J.M.; Buroker, R.A.; Bregman, C.L.; Ghazzouli, L.; Deaiderio, J.V.; Starrett, J.E.; Sterzyski, R.Z.; Martin, J.C. Comparison of in vivo biological properties and mouse toxicities of three thymidine analogues active against human immunodeficiency virus. Antimicrob. Agents Chemother. 1990, 34, 637.
- Haraguchi, K.; Takeda, S.; Tanaka, H. Ring opening of 4',5'-epoxynucleosides: a novel stereoselective entry to 4'-C-branched nucleosides. Org. Lett. 2003, 5, 1399.
- Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y. Synthesis of a highly active new anti-HIV agent 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine. Bioorg. Med. Chem. Lett. 2003, 13, 3775.
- Haraguchi, K.; Itoh, Y.; Takeda, S.; Honma, Y.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y. Synthesis and anti-HIV activity of 4'-cyano-2',3'-didehydro-3'-deoxythymidine. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 647.
- Dutschman, G.E.; Grill, S.P.; Gullen, E.A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y.-C. Novel 4'-substituted stavudine analog with improved anti-immunodeficiency virus activity and decreased cytotoxicity. Antimicrob. Agents Chemother. 2004, 48, 1640.
- Kato, K.; Suzuki, H.; Tanaka, H.; Miyasaka, T. Enantio- and diastereoselective synthesis of 4'-α-substituted carbocyclic nucleosides. Tetrahedron Asymmetry 1998, 9, 911.
- Kato, K.; Suzuki, H.; Tanaka, H.; Miyasaka, T.; Baba, M. Stereoselective synthesis of 4'-α-alkylcarbovir derivatives based on an asymmetric synthesis or chemoenzymatic procedure. Chem. Pharm. Bull. 1999, 47, 1256
- Larock, R.C.; Hightower, R.T.; Kraus, A.G.; Hahn, P.; Zheng, D. A simple, effective, new, palladiumcatalyzed conversion of enol silanes to enones and enals. Tetrahedron. Lett. 1995, 36, 2423.
- Luche, J.L.; Genal, A.L. Lanthanoids in organic synthesis. 5. selective reductions of ketones in the presence of aldehydes. J. Am. Chem. Soc. 1979, 101, 5848.
- Oehlschlager, A.C.; Mishra, P.; Dhami, S. Metal-catalyzed rearrangements of allylic seters. Can. J. Chem. 1984, 62, 791.
- Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981, 1.
- Choi, Y.; George, C.; Comin, M.J.; Barchi, J.J., Jr.; Kim, H.S.; Jacobson, K.A.; Balzarini, J.; Mitsuya, H.; Boyer, P.L.; Hughes, S.H.; Marquez, V.E. A conformationally locked analogue of the anti-HIV agent stavudine. An important correlation between pseudorotation and maximum amplitude. J. Med. Chem. 2003, 46, 3292.
- 23. Corey, E.J.; Fuchs, P.L. A synthetic method for formyl ethynyl conversion (RCHO \rightarrow RC \equiv CH or RC \equiv CR'). Tetrahedron Lett. **1972**, 3769.
- Gillaizeau, I.; Lagoja, I.M.; Nolan, S.P.; Aueagne, V.; Rozenski, J.; Herdewijin, P.; Agrofoglio, L.A. Straightforward synthesis of labeled and unlabeled pyrimidine d4Ns via 2',3'-diyne seco analogues through olefin metathesis reactions. Eur. J. Org. Chem. 2003, 666.
- Callant, P.; Haenens, L.D.; Vandewalle, M. An efficient preparation and the intramolecular cyclopropanation
 of α-diazo-β-ketophosphonates and α-diazophosphonoacatates. Synth. Commun. 1984, 14, 155.
- Kohgo, S.; Yamada, K.; Kitano, K.; Iwai, Y.; Sakata, S.; Ashida, N.; Hayakawa, H.; Nameki, D.; Kodama, E.; Matsuoka, M.; Mitsuya, H.; Ohrui, H. Design, efficient synthesis, and anti-HIV activity of 4'-C-cyano- and 4'-C-ethynyl-2'-deoxy purine nucleosides. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 671–690.